Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(11): 17052-17063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334929

RESUMO

Improving the adsorption performance of wetland fillers is of great significance for enhancing pollutant removal in constructed wetlands. Currently, limited by complex preparation processes and high costs, large numbers of high adsorption fillers studied in lab are difficult to be applied in practical engineering. In this study, a newly low-cost and efficient phosphorus removal composite wetland filler (CFB) is prepared by using industrial and agriculture waste (steel slag and oyster shells) and natural ore (volcanic rock) as raw materials. The results show that phosphorus removal efficiency was largely enhanced by synergistic effects of steel slag, oyster shells, and volcanic rock, and it was mainly influenced by the proportion of each component of CFB. Based on the fitting of the classical isothermal equation, the adsorption capacity of CFB is 18.339 mg/g. The adsorption of phosphorus by CFB is endothermic and spontaneous, and there are heterogeneous surfaces and multi-layer adsorption processes, as well as pH value and temperature, are free from the influence on CFB phosphorus removal. During the practical wastewater application experiments, the phosphorus removal rate of the CFB-filled constructed wetland apparatus (CW-A) can reach 94.89% and is free from the influence on the removal of other pollutants (COD, TN, and NH3-N) by the system. Overall, the prepared CFB is of excellent decontamination effect, an extremely simple preparation process, low cost, and sound practical engineering application potential, providing new ideas and approaches for enhancing the phosphorus removal capacity and waste resource utilization of constructed wetland systems.


Assuntos
Poluentes Ambientais , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Fósforo , Águas Residuárias , Excipientes , Carbonato de Cálcio , Aço , Nitrogênio/análise
2.
Chemosphere ; 352: 141414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336042

RESUMO

The use of silicon fertilizer (SF) as a means of remediating cadmium (Cd) and lead (Pb) pollution has proven to be beneficial. However, the mechanism via which SF enhances soil quality and crop productivity under Cd- and Pb-contaminated soil (S) remains unclear. This study investigated the impacts of chemical fertilizer, mineral SF (MSF), and organic SF (OSF) on microbial community structure, activity of nutrient acquisition enzymes, and growth of tobacco in the presence of S condition. SF significantly reduced the contents of Cd and Pb in soil under S condition by 6.92-42.43% and increased plant height and leaf area by 15.27-81.77%. Moreover, the use of SF was observed to increase the efficiency of soil carbon and phosphorus cycling under S condition by 6.88-23.08%. Concurrently, SF was found to play a crucial role in facilitating the establishment of a complex, efficient, and interdependent molecular ecological network among soil microorganisms. In this context, Actinobacteriota, Bacteroidota, Ascomycota, and Basidiomycota were observed to be integral components of this network. SF was found to have a substantial positive impact on the metabolic functions and organismal systems of soil microorganisms. Moreover, the combined utilization of the Mantel test and partial least squares path model provided empirical evidence supporting the assertion that the administration of SF had a positive impact on both soil nutrient acquisition enzyme activity and tobacco growth, which was attributed to the enhancement of soil microbial diversity resulting from the application of SF. Furthermore, compared with MSF, OSF has advantages in reducing soil Pb and Cd content, promoting tobacco agronomic traits, increasing the number of key microbial communities, and maintaining the structural stability of microbial networks. The aforementioned findings, therefore, suggest that the OSF played a pivotal role in alleviating the adverse impacts of S, thereby demonstrating its efficacy in this particular process.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Fertilizantes , Silício , Chumbo/toxicidade , Solo/química , Microbiologia do Solo , Metais Pesados/análise , Poluentes do Solo/análise
3.
Sci Rep ; 13(1): 13301, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587159

RESUMO

So far, coal, petroleum, and natural gas are still the most widely used fuels, and the emissions of SO2, NOX and particulate matter produced from their combustion have a serious influence on the air. Therefore, it is necessary to develop a clean fuel. In this study, the bulk curing barns were equipped with different fuel equipment, Barn A used traditional coal heating equipment; Barn B used biomass briquettes fuel (BBF) integrated heating equipment; Barn C equipped with alcohol-based fuel (ABF) heating equipment. The temperature of the outer surface of the heating equipment, the exhaust gas of the chimney, and the curing heat efficiency and energy consumption were analyzed. Compared with the barn BBF and barn coal, the barn ABF can meet the flue-cured tobacco curing highest temperature requirements of 68 °C, the accuracy of the target dry bulb temperature (DBT) curve during the curing of flue-cured tobacco was 93.4%. At the same time, during ABF combustion, the emissions of CO2 and CO were 40.82% and 0.19%, respectively. However, no emissions of NOX, SO2, and H2S were detected in the chimney exhaust. Compared with the barn BBF and barn coal, the thermal efficiency of barn ABF heating equipment in the barn was increased by 44.78% and 86.28%, respectively. Additionally, the coast per kilogram of dry tobacco was reduced by 19.44% and 45.28%, respectively. Therefore, compared to barn coal and barn BBF, the barn ABF can control temperature changes more accurately, and shows an obvious advantage in environmental protection and heat utilization efficiency.

4.
J Chromatogr A ; 1705: 464172, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392637

RESUMO

Feature extraction is the most fundamental step when analyzing liquid chromatography-mass spectrometry (LC-MS) datasets. However, traditional methods require optimal parameter selections and re-optimization for different datasets, thus hindering efficient and objective large-scale data analysis. Pure ion chromatogram (PIC) is widely used because it avoids the peak splitting problem of the extracted ion chromatogram (EIC) and regions of interest (ROIs). Here, we developed a deep learning-based pure ion chromatogram method (DeepPIC) to find PICs using a customized U-Net from centroid mode data of LC-MS directly and automatically. A model was trained, validated, and tested on the Arabidopsis thaliana dataset with 200 input-label pairs. DeepPIC was integrated into KPIC2. The combination enables the entire processing pipeline from raw data to discriminant models for metabolomics datasets. The KPIC2 with DeepPIC was compared against other competing methods (XCMS, FeatureFinderMetabo, and peakonly) on the MM48, simulated MM48, and quantitative datasets. These comparisons showed that DeepPIC outperforms XCMS, FeatureFinderMetabo, and peakonly in recall rates and correlation with sample concentrations. Five datasets of different instruments and samples were used to evaluate the quality of PICs and the universal applicability of DeepPIC, and 95.12% of the found PICs could precisely match their manually labeled PICs. Therefore, KPIC2+DeepPIC is an automatic, practical, and off-the-shelf method to extract features from raw data directly, exceeding traditional methods with careful parameter tuning. It is publicly available at https://github.com/yuxuanliao/DeepPIC.


Assuntos
Aprendizado Profundo , Software , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Metabolômica/métodos
5.
Appl Microbiol Biotechnol ; 107(13): 4217-4232, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209161

RESUMO

Starch and cellulose are the fundamental components of tobacco, while their excessive content will affect the quality of tobacco. Enzymatic treatment with different enzymes is a promising method to modulate the chemical composition and improve the sensory quality of tobacco leaves. In this study, enzymatic treatments, such as amylase, cellulase, and their mixed enzymes, were used to improve tobacco quality, which could alter the content of total sugar, reducing sugar, starch, and cellulose in tobacco leaves. The amylase treatment changed surface structure of tobacco leaves, increased the content of neophytadiene in tobacco by 16.48%, and improved the total smoking score of heat-not-burn (HnB) cigarette products by 5.0 points compared with the control. The Bacillus, Rubrobacter, Brevundimonas, Methylobacterium, Stenotrophomonas, Acinetobacter, Pseudosagedia-chlorotica, and Sclerophora-peronella were found to be significant biomarkers in the fermentation process by LEfSe analysis. The Basidiomycota and Agaricomycetes were significantly correlated with aroma and flavor, taste, and total score of HnB. The results showed that microbial community succession occurred due to amylase treatment, which promoted the formation of aroma compounds, and regulated the chemical composition of tobacco, and improved tobacco quality during tobacco fermentation. This study provides a method for enzymatic treatment to upgrade the quality of tobacco raw materials, thereby improving the quality of HnB cigarettes, and the potential mechanism is also revealed by chemical composition and microbial community analysis. KEY POINTS: Enzymatic treatment can change the chemical composition of tobacco leaves. The microbial community was significantly affected by enzymatic treatment. The quality of HnB cigarettes was significantly improved by amylase treatment.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Produtos do Tabaco/análise , Fermentação , Temperatura Alta
6.
Ecotoxicol Environ Saf ; 255: 114816, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963187

RESUMO

Remediation of soil contaminated with cadmium (Cd) and lead (Pb) is critical for tobacco production. Silicon (Si) fertilizer can relieve heavy metal stress and promote plant growth, however, it remains unknown whether fertilization with Si can mitigate the effects of Cd and Pb on tobacco growth and alter microbial community composition in polluted soils. Here we assessed the effect of two organic (OSiFA, OSiFB) and one mineral Si fertilizer (MSiF) on Cd and Pb accumulation in tobacco plants, together with responses in plant biomass, physiological parameters and soil bacterial communities in pot experiments. Results showed that Si fertilizer relieved Cd and Pb stress on tobacco, thereby promoting plant growth: Si fertilizer reduced available Cd and Pb in the soil by 37.3 % and 28.6 %, respectively, and decreased Cd and Pb contents in the plant tissue by 42.0-55.5 % and 17.2-25.6 %, resulting in increased plant biomass by 13.0-30.5 %. Fertilization with Si alleviated oxidative damage by decreasing malondialdehyde content and increasing peroxidase and ascorbate peroxidase content. In addition, Si fertilization increased photosynthesis, chlorophyll and carotenoid content. Microbial community structure was also affected by Si fertilization. Proteobacteria and Actinobacteria were the dominant phylum in the Cd and Pb contaminated soils, but Si fertilization reduced the abundance of Actinobacteria. Si fertilization also altered microbial metabolic pathways associated with heavy metal resistance. Together, our results suggest that both organic and mineral Si fertilizers can promote tobacco growth by relieving plant physiological stress and favoring a heavy metal tolerant soil microbial community.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Silício/farmacologia , Chumbo/toxicidade , Fertilizantes/análise , Metais Pesados/metabolismo , Solo/química , Fertilização , Poluentes do Solo/análise
7.
Bioresour Bioprocess ; 10(1): 32, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38647749

RESUMO

The first-cured tobacco contains macromolecular substances with negative impacts on tobacco products quality, and must be aged and fermented to mitigate their effects on the tobacco products quality. However, the natural fermentation takes a longer cycle with large coverage area and low economic efficiency. Microbial fermentation is a method to improve tobacco quality. The change of chemical composition of tobacco during the fermentation is often correlated with shapes of tobacco. This study aimed to investigate the effects of tobacco microorganisms on the quality of different shapes of tobacco. Specifically, Bacillus subtilis B1 and Cytobacillus oceanisediminis C4 with high protease, amylase, and cellulase were isolated from the first-cured tobacco, followed by using them for solid-state fermentation of tobacco powder (TP) and tobacco leaves (TL). Results showed that strains B1 and C4 could significantly improve the sensory quality of TP, enabling it to outperform TL in overall texture and skeleton of tobacco products during cigarette smoking. Compared with the control, microbial fermentation could increase reducing sugar; regulate protein, starch, and cellulose, reduce nicotine, improve total aroma substances, and enable the surface of fermented TP and TL to be more loose, wrinkled, and porous. Microbial community analysis indicated that strains B1 and C4 could change the native structure of microbial community in TP and TL. LEfSe analysis revealed that the potential key biomarkers in TP and TL were Bacilli, Pseudonocardia, Pantoea, and Jeotgalicoccus, which may have cooperative effects with other microbial taxa in improving tobacco quality. This study provides a theoretical basis for improving tobacco fermentation process for better cigarettes quality.

8.
Front Plant Sci ; 13: 973639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160995

RESUMO

Organic fertilizer is effective in improving soil quality, and promoting crop growth. Combined organic and inorganic fertilization has been proved as a more favorable way to tobacco yield and quality. However, the mechanisms underlying tobacco yield and quality under combinations of different organic and inorganic fertilizer remain unclear. We conducted a 12-year tobacco (Nicotiana tabacum L.)-maize crop rotation field experiment in Yanhe experimental station, China to examine the yields and qualities of tobacco, soil nutrients, and extracellular enzyme activities associated with carbon, nitrogen, and phosphorus cycles in response to different fertilization treatments. Five fertilization treatments (no fertilization; 75 kg N fertilizer ha-1; 450 kg oil cake ha-1 + 75 kg N fertilizer ha-1; 15,000 kg pig dung ha-1 + 60 kg N fertilizer ha-1; 3,000 kg straw ha-1 + 75 kg N fertilizer ha-1) were applied to tobacco while maize was fertilized with inorganic compound fertilizers. After 12 years of tobacco-maize rotation, the results showed that organic fertilizer additions elevate tobacco yield and quality, and the soil extracellular enzymes activities. Gram-negative bacteria, actinomycetes, and total soil microbial biomass were increased by organic fertilizer additions, both plant-based (oil cake and straw) and animal-based (pig dung) organics. The levels of soil organic matter, total organic carbon, total phosphorus and available phosphorus are higher in pig dung addition treatment than oil cake and straw additions. By variance analysis with respect to fertilization treatments, organic sources differentially affected the activities of diverse soil enzymes. The redundancy analysis gave that yield and quality of tobacco leaves (upper, middle, and lower leaves) positively related to soil extracellular enzyme activities. Based on analysis of yield and quality of tobacco leaves with extracellular enzyme activities and soil nutrients, it is suggested animal-based organic fertilizer, thus pig dung, should be used in combining with chemical fertilizers to improve the quality of tobacco and soil nutrients.

9.
Front Plant Sci ; 13: 847388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548306

RESUMO

Tobacco (Nicotiana tabacum) root affects the yield and quality of tobacco leaves. To gain insight into the responses of the tobacco root system to different soil types, we integrated morphological characteristics, the physiological index, the metabolic pathways of the root system, and the aboveground biomass of tobacco cultivated in limestone soil (LS), paddy soil (PS), and red soil (RS). Compared with plants growing in LS and PS, the chemical composition of tobacco leaves in RS tended to be coordinated. Red soil facilitated the accumulation of aboveground and belowground biomass of flue-cured tobacco and had the most significant effect on the dry matter quality of the roots. In addition, it promoted an increased root length, root surface area (RSA), root volume, and a higher number of root forks and improved root vigor and nitrate reductase (NR) activity; however, the activities of superoxide dismutase (SOD) and peroxidase (POD) were decreased. We studied differentially the abundant proteins (DAPs) of the flue-cured tobacco roots cultivated in different soil types by isobaric tags for the relative and absolute quantification (iTRAQ) of the proteomic profiles of cultivar. In total, 699, 650, and 569 differentially abundant proteins (DAPs) were identified from limestone soil (LS) vs. PS, LS vs. RS, and PS vs. RS, respectively, including 412/287, 291/359, and 323/246 up-/downregulated proteins, respectively. These DAPs were mainly involved in starch and sucrose metabolism, phenylalanine metabolism, the biosynthesis of secondary metabolites, microbial metabolism in different environments, and ribosomes. The parallel reaction monitoring (PRM) and quantitative reverse transcription PCR (qRT-PCR) analysis showed that the results of the iTRAQ proteomics were reliable. Overall, our study facilitates a new understanding of the responses of tobacco roots to different soil types at the protein level.

10.
J Environ Manage ; 315: 115190, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526398

RESUMO

Identifying field management practices to promote crop production, while conserving soil health is essential to maintain long-term food production in a changing world. Also, providing experimental evidence to support the use of traditional agricultural practices is necessary to secure sustainable agriculture. Here, we conducted a long-term 12-year experiment to investigate the impact of different combinations of fertilization type (control, inorganic fertilizer, organic fertilizer) and cropping regimes (continuous cropping and rotation cropping) on the crop (tobacco) production and multiple soil attributes associated with soil health, including proportions of soil-borne pathogens and decomposers, soil microbial diversity, microbial network stability and biomass, nutrient pools and microbial resource limitations. Our long-term experiment supports that the combination of organic fertilizer with rotation cropping increased crop production by at least 40% compared to the other management combinations and improved soil nutrient pools (e.g. the content of soil organic matter), improved the relative proportion of soil decomposers, and promoted bacterial and fungal network stability and biodiversity. Furthermore, this combination treatment relieved microbial resource limitation and reduced the abundance of potential fungal plant pathogens by at least 20% compared to other management combinations. In summary, we provide experimental evidence to support that the combined use of organic fertilization and rotation cropping management can help maintain long-term soil health, crop production, and economic outputs.


Assuntos
Fertilizantes , Solo , Agricultura , Produção Agrícola , Fertilizantes/análise , Microbiologia do Solo
11.
Front Microbiol ; 13: 818956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516429

RESUMO

Continuous cropping leads to the development of serious fungal diseases in tobacco plants and depleted yield of tobacco (Nicotiana tabacum), which can be mitigated by organic fertilization. Yet, we know little about how organic fertilizers affect the fungal community of continuous cropping tobacco soil. In this study, we investigated the soil fungal community after 11 years of tobacco planting with chemical fertilization (CF) or chemical fertilization combined with organic fertilizers obtained from plant or animal origin, including oil cake (CFO), straw (CFS), and farmyard fertilizer (CFM). The predominant phyla of Ascomycota (70%) and Mortierellomycota (15%) were identified in all the treatments. A significantly higher proportion of Pyrenochaetopsis and lower relative abundance of Sordariomycetes were observed in the CFM group compared to the controls. Compared to CF and non-fertilized control (CK), CFO and CFS led to higher species richness (P < 0.05), while CFM led to a less uniform fungal community, indicated by lower Shannon and higher Simpson diversity indices (P < 0.05). Pearson's correlation and redundancy analysis suggested that fertilizations primarily influenced the fungal community by altering the soil nutrient conditions, among which soil organic carbon and total phosphorus significantly correlated with the fungal diversity and community composition (P < 0.05). Notably, FUNGuild annotation suggested that while other treatments showed no significant effect on the fungal trophic modes, CFM strongly increased the abundance of saprotrophic fungi by more than 30% (P < 0.05), thus preventing the prevalence of potential pathotypes and symbionts. The results suggest that the type of organic fertilizers is essential to the long-term effects of organic application on the fungal community, and the animal-origin manure seems to be a better choice than plant-origin materials in continuous cropping tobacco fields.

12.
Sci Rep ; 12(1): 3264, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228617

RESUMO

Despite many studies on the influence of cropping practices on soil microbial community structure, little is known about ecological patterns of rare and abundant microbial communities in response to different tobacco cropping systems. Here, using the high-throughput sequencing technique, we investigated the impacts of two different cropping systems on soil biochemical properties and the microbial community composition of abundant and rare taxa and its driving factors in continuous and rotational tobacco cropping systems in the mountain lands of Yunnan, China. Our results showed that distinct co-occurrence patterns and driving forces for abundant and rare taxa across the different cropping systems. The abundant taxa were mainly constrained by stochastic processes in both cropping systems. In contrast, rare taxa in continuous cropping fields were mainly influenced by environmental perturbation (cropping practice), while governed by deterministic processes under rotational cropping. The α-diversity indices of rare taxa tended to be higher than those of the abundant ones in the two cropping systems. Furthermore, the network topologies of rare taxa were more complex than those of the abundant taxa in the two cropping systems. These results highlight that rare taxa rather than abundant ones play important roles in maintaining ecosystem diversity and sustaining the stability of ecosystem functions, especially in continuous cropping systems.


Assuntos
Microbiota , Solo , Bactérias/genética , China , Solo/química , Microbiologia do Solo
13.
Iran J Biotechnol ; 19(3): e2812, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34825016

RESUMO

BACKGROUND: Microorganisms play an important role in reducing harmful substances in flue-cured tobacco. Numerous studies have been conducted to degrade nicotine by microorganisms. OBJECTIVES: The present research deals with the isolation of a potent bacterial strain able to efficiently degrade nicotine and tobacco-specific nitrosamines (TSNAs) in flue-cured tobacco. MATERIAL AND METHODS: Bacterial strain J54, capable of efficiently degrading nicotine and tobacco-specific nitrosamines (TSNAs), was isolated from tobacco leaves and identified. The strain J54 can use nicotine as the sole carbon and nitrogen source and could effectively degrade nicotine while growing in a nicotine isolation medium (NIM) medium. RESULTS: Compared with the control (CK), the total TSNAs content in the tobacco flue-cured eaves after being sprayed with a solution of the J54 strain was found to decrease by 26.22%. Therein, the degradation rates of 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N'-nitrosonornicotine (NNN), N'-nitrosoanatabine (NAT), and N'-nitrosoanabasine (NAB) were 24.01%, 26.27%, 28.6%, and 1.83%, respectively. CONCLUSIONS: Bacterial strain J54, was isolated from tobacco leaves and identified as a bacterium, which is similar to Bacillus altitudinis based on its morphological and biochemical characteristics and by phylogenetic analysis based on 16S rRNA gene sequences. To our knowledge, this is the first report of the isolation and characterization of a Bacillus sp. strain that can efficiently degrade nicotine and TSNAs. The findings pave the way for the application of new biotechnologies for the degradation of nicotine and TSNAs by microorganisms.

14.
Front Microbiol ; 12: 658116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335492

RESUMO

"Cherry-red" tobacco is the superior variant of tobacco, appearing with the apperance of red dapples on cured leaves due to the demethylation of nicotine to nornicotine during maturation and curing. Fungi are known to have the capacity to convert nicotine to nornicotine. However, an endophytic fungal community of "cherry-red" tobacco has never been reported to our best knowledge. Here, we sampled mature leaves from both "cherry-red" and ordinary tobacco at lower, center, and upper plant sections, and we analyzed the ITS diversity using high-throughput sequencing. Results revealed a significantly different fungal community of foliar endophyte in "cherry-red" and ordinary tobacco. In comparison to the ordinary control, higher diversity and a co-occurrence network complex were found in "cherry-red" samples, especially in the center and upper leaves, where the red dapples mainly emerged. More taxa were enriched in the "cherry-red" than ordinary tobacco leaves at all plant sections. In particular, Aspergillus, some strains of which are reported capable of converting nicotine to nornicotine, was specifically enriched in upper "cherry-red" tobacco leaves, which showed most red dapples after curing. A less robust network structure was detected in the "cherry-red" tobacco compared to ordinary tobacco. The nearest taxon index (NTI) and ß NTI indicated that the local community structuration of tobacco endophytic fungi mainly driven by deterministic process, while the community turnover among plant sections was stochastic. In conclusion, our study provides the earliest information of endophytic fungal community in "cherry-red" tobacco leaf, and the community diversity, composition, and network features are synchronously varied with the appearance of red dapples, which is suggestive of their relationship to the formation of "cherry-red" tobacco.

15.
Sci Rep ; 10(1): 9203, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514187

RESUMO

The rhizospheric microbial community is one of the major environmental factors affecting the distribution and fitness of plants. Ancient wild tea plants are rare genetic resource distributed in Southwest China. In this study, we investigated that rhizospheric bacterial communities of ancient wild tea plants along the elevational gradients (2050, 2200, 2350 and 2500 m) in QianJiaZhai Reserve of Ailao Mountains. According to the Illumina MiSeq sequencing of 16 S rRNA gene amplicons, Proteobacteria, Acidobacteria and Actinobacteria were the dominant phyla with the relative abundance 43.12%, 21.61% and 14.84%, respectively. The Variibacter was the most dominant genus in rhizosphere of ancient wild tea plant. Phylogenetic null modeling analysis suggested that rhizospheric bacterial communities of ancient wild tea plants were more phylogenetically clustered than expected by chance. The bacterial community at 2050 m was unique with the highest alpha diversity, tend to cluster the nearest taxon and simple co-occurrence network structure. The unique bacterial community was correlated to multiple soil factors, and the content soil ammonium nitrogen (NH4+-N) was the key factor affecting the diversity and distribution of bacterial community along the elevational gradients. This study provided the necessary basic information for the protection of ancient tea trees and cultivation of tea plants.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Chá/microbiologia , Acidobacteria/genética , Acidobacteria/crescimento & desenvolvimento , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Bactérias/genética , Biodiversidade , China , Florestas , Nitrogênio/metabolismo , Filogenia , Plantas/microbiologia , Proteobactérias/genética , Proteobactérias/fisiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo , Microbiologia do Solo
16.
Tree Physiol ; 37(11): 1503-1514, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985430

RESUMO

The sex ratios of co-existing Populus and Salix vary depending on altitude and species: 1:1 equlibrium sex ratios are observed at mid-altitude but skewed ones at high altitudes, where Populus shows male-biased and Salix female-biased sex ratios. However, the underlying ecological mechanisms are poorly known. Reproductive investments of Populus purdomii Rehd. and Salix magnifica Hemsl. were assessed at altitudes of 2000 and 2600 m in the Gongga Mountain by different metrics, including biomass, carbon (C), nitrogen (N) and phosphorus (P) concentrations and construction cost, and by estimating the payback time that combines energy gain and associated costs. Reproductive investment measured as C, N and P concentrations, and construction cost was higher in P. purdomii females at 2600 m. However, in S. magnifica, no difference was observed for biomass, C and N at 2600 m, but the investments for P and construction cost were even greater in males. The payback time showed no significant differences for the sexes at 2000 m, but it was shorter for P. purdomii males and S. magnifica females at 2600 m. We concluded that nutrient- and construction cost-based estimates of reproductive allocation can provide more informative insight into the cost of reproduction than does biomass, and together with the payback time they can supply an explanation for divergent sex ratios in Populus and Salix. Consequently, our results improve our understanding of the causes and consequences of sexual dimorphism in dioecious species.


Assuntos
Biomassa , Populus/fisiologia , Salix/fisiologia , Altitude , China , Flores/química , Flores/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Reprodução , Salix/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Simpatria
17.
Tree Physiol ; 37(6): 799-814, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338926

RESUMO

In this study, intra- and interspecific competition were investigated in early successional Salix rehderiana Schneider and later-appearing Populus purdomii Rehder under non-fertilized (control) and nitrogen (N)-fertilized conditions in the Hailuogou glacier retreat area. Our aim was to discover whether N is a key factor in plant-plant competition and whether N drives the primary succession process in a glacier retreat area. We analyzed differences in responses to intra- and interspecific competition and N fertilization between P. purdomii and S. rehderiana, including parameters such as biomass accumulation, nutrient absorption, non-structural carbohydrates, photosynthetic capacity, hydrolysable amino acids and leaf ultrastructure. In the control treatments, S. rehderiana individuals subjected to interspecific competition benefited from the presence of P. purdomii plants, as indicated by higher levels of biomass accumulation, photosynthetic capacity, N absorption, amino acid contents and photosynthetic N-use efficiency. However, in the N-fertilized treatments, P. purdomii individuals exposed to interspecific competition benefited from the presence of S. rehderiana plants, as shown by a higher growth rate, enhanced carbon gain capacity, greater amino acid contents, and elevated water-use efficiency, whereas the growth of S. rehderiana was significantly reduced. Our results demonstrate that N plays a pivotal role in determining the asymmetric competition pattern among Salicaceae species during primary succession. We argue that the interactive effects of plant-plant competition and N availability are key mechanisms that drive primary succession in the Gongga Mountain glacier retreat area.


Assuntos
Nitrogênio/fisiologia , Populus/fisiologia , Salix/fisiologia , China , Camada de Gelo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...